Let $\Omega = [0, 1]$ (sample space), \mathcal{F} be the σ -field generated by events [a, b] for any $0 \le a \le b \le 1$ and P[[a, b]] = b - a be the Lebesgue measure (also a probability measure), thereby (Ω, \mathcal{F}, P) forming a probability space. Let us consider some examples for illustrating the convergence in probability and almost sure convergence of random sequences defined on this probability space.

Let $Y_{n,m}$ for n = 1, 2, ..., m = 1, ..., n be random variables defined as

$$Y_{n,m}(\omega) = \begin{cases} 1, & \omega \in A_{n,m} \triangleq \Omega \setminus [(m-1)/n, m/n] \\ 0, & \text{otherwise} \end{cases}$$
(0.1)

and thus $P[Y_{n,m} = 1] = 1 - 1/n$ and $P[Y_{n,m} = 0] = 1/n$ for all m. Let X = 1 and X_k be a random sequence defined by $Y_{n,m}$ as follows

$$Y_{1,1} = X_1,$$

$$Y_{2,1} = X_2, Y_{2,2} = X_3,$$

...

$$Y_{n,1} = X_{n(n-1)/2+1}, \dots, Y_{n,n} = X_{n(n+1)/2},$$

...

Then for $0 < \epsilon < 1$ we have

$$P[A_{n,m}] = P[|X_{n(n-1)/2+m} - X| \le \epsilon]$$

= $P[X_{n(n-1)/2+m} = 1] = 1 - \frac{1}{n}$ (0.2)

implying that

$$\lim_{k \to \infty} P[|X_k - X| \le \epsilon] = \lim_{n \to \infty} P[|Y_{n,m} - X| \le \epsilon] = 1,$$

i.e., X_k converges to X = 1 in probability. However, for any $\omega^* \in \Omega$ and any finite positive integer N, there exists at least an $A_{n,m}$ such that $\omega^* \in A_{n,m}^C = [(m-1)/n, m/n]$ where n(n-1)/2 + m > N. In other words, it is impossible that $|X_k(\omega^*) - X(\omega^*)| \le \epsilon$ for all k > N, or it must be true that

$$\bigcap_{n>N}\bigcap_{m=1}^{n}A_{n,m}=\emptyset$$

implying that X_k does not converge almost surely to X = 1.

Consider another random sequence X_k defined as follows.

$$X_k(\omega) = \begin{cases} 1, & \omega \in A_k \triangleq [0, \sum_{n=1}^k (0.5)^n] \\ 0, & \text{otherwise} \end{cases}$$
(0.3)

and so $P[X_k = 1] = \sum_{n=1}^k (0.5)^n$ and $P[X_k = 0] = 1 - P[X_k = 1]$. It can be seen that $A_m \subset A_k = \{\omega : |X_k(\omega) - X(\omega)| < \epsilon\}$ for m < k and $0 < \epsilon < 1$. Thus

$$\lim_{m \to \infty} \left\{ B_m \triangleq \bigcap_{k=m}^{\infty} A_k \right\} = [0,1) = \Omega \setminus \{1\}$$

v

implying that X_k converges to X = 1 with probability 1 since P[[0, 1)] = 1. Surely, X_k converges to X = 1 in probability as well since almost sure convergence implies convergence in probability.